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For the problem of finding attainability sets of systems with bilinear uncertainty, the possibilities of outer approximations (estimates) 

by parallelepipeds are investigated. Evolution equations describing the dynamics of outer estimates are derived. Results of a 

numerical simulation are presented. 0 2002 Elsevier Science Ltd. All rights reserved. 

The problem of constructing trajectory tubes (many-valued functions describing the dynamics of 
attainability sets, solvability sets, and information domains) may be considered to be one of the 
fundamental problems of mathematical control theory (see, e.g. [la]). The exact construction of these 
sets may prove difficult. The attainability sets of systems with bilinear uncertainty considered in this 
paper (linear systems with indeterminate matrices) [.5-81 need not be be convex. Therefore, along with 
other approximation methods, it seems important to develop methods to construct simple but efficient 
estimates for attainability sets. Since the initial many-valued functions possess the semigroup property, 
one naturally requires the estimates to possess an analogous property. One of the most rapidly developing 
methods in this area is that of ellipsoidal approximation (see, e.g. [3, 4, 7, 9-111). Parallelepipedal 
estimates are also being constructed (see, e.g. [l, 9, 12, 131 and the bibliographies cited there). 
Coordinatewise estimates may be obtained by using interval calculus [14,15]. However, these may turn 
out to be too coarse, because of the well-known “wrapping effect” [15, p. 1771. 

Below we present ordinary differential equations which, for given dynamics of the orientation matrices, 
describe the dynamics of centres and “semi-axis values” for two types of parallelepipedal estimates of 
attainable sets. Simpler estimates of the first type are constructed on the basis of approximations 
analogous to those proposed in [7, 111; those of the second type are based on more accurate 
approximations. Model examples are used to compare these estimates with ellipsoidal estimates [7, lo]. 
It is observed that they may be less laborious and more accurate (but not always). A case is singled out 
in which more accurate estimates for attainability sets may be obtained by combining several 
parallelepipedal estimates. 

1. FORMULATION OF THE PROBLEM 

Suppose the state x E R” of an object is described by the system 

i = A(r)x+ B(r)w(t), reT = [O,@ (1.1) 

where Iw” Euclidean n-space; the initial state x(0) = x0 and action w(.) (a Lebesgue-measurable 
n-dimensional function of time t) are unknown in advance and subject to restrictions 

x(O)E&, war for almost all TV T (1.2) 

X0 and R(f) are given convex compact sets and the multivalued mapping R(t) is continuous; then 
n x n matrix-valued functions A and B are also not known exactly but subject to the restrictions 

A(t)~A(tl, A(t)=(A :&)aA&i(r)), reT (1.3) 

k?(t)~B(t), B(t)=(B:B(r)sB~B(t)), JET (1.4) 
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Relations (1.3) may be written differently as 

A(r)eA(t) = (A : A = ;i(t)+AA(r), AA(t)&)) 

(1.5) 
~(t)=(A:AbsA~~(t)), ;I =(A+$/2, i =(,&4)/2 

Matrix inequalities, here and below, should be understood in componentwise fashion. AbsA denotes 
the matrix of absolute values of the elements of the matrix A = {a!): AbsA = { Ia;! 1) (the superscript 
indicates the columns, the subscrip! the rows), The notationj,B a$ i?S is defined similarly. It is assumed 
that the known functions d = {LZ!>, A = {a:), B = {_bj}, B = (6;) are continuous in r. 

The attainability set X(t) = X(t, 0, X0) of system (l.l)-( 1.4) for t 2 0 is the set of points x E (w” for 
each of whichxO, w(.),A(.) and B(.) exist satisfying conditions (1.2)-( 1.4) and generating a solutionx( ,) 
of system (1.1) such that x(t) = x. 

Attainability sets are known to possess the semigroup property 

X(t,O,X,)=X(t,2,X(T,O,X,)j, VT,t: Os7stG (1.6) 

We shall assume that X0 and R(f) are parallelepipeds and seek outer parallelepipedal estimates P(f) 
for X(t) 

(1.7) 

Aparallelepiped P(p, P, 71) in [w” is a set 

P=P(p.P,x)=(x:x=p+~ pi7&, ll$p=l, i=l,...,n) 
1=I 

where IV,“” = {P: det P f 0, lip1 11 = 1, i = 1, . , n} is the set of all non-singular n x n matrices P with 
columnsp’ of unit lengfh (/Ix II = (x,x) ‘S is the Euclidean norm). One can say that p defines the centre 
of the parallelepiped,p’ are “directions,” and ni are the lengths of its “semiaxes”. Note that the condition 
/p’II = 1 is not essential and may be omitted. 

We are thus assuming that 

X0 = P(Po, PO,~O), R(r) = P(r(t), R(t),p(t)) (1.8) 

where r, R and p are continuous vector- and matrix-valued functions. We shall seek outer estimates 
P(t)= P(p(t), p(t), n(f)) for X(t) p ossessing generalized semigroup and evolution properties, which are 
analogues of property (1.6). We recall that the evolution proper@ [4] of estimates is formulated in terms 
of attainability sets 

x(t,T,P(T))cP(r), v’r,r : ostse; x, EP(O) (1.9) 

and guarantees that (1.7) is satisfied. As we shall see below, P(t) may be found from the evolution 
equations with initial conditions P(O), and by analogy with attainability sets one can introduce the 
notation P(f) = P{ (t, 0, P(O)}. We say [3] that estimates P(f) possess the “upper” semigroup property if 

(1.10) 

In what follows we shall use the following notation: COX is the convex hull of X C [w”, conv[w” is the 
set of convex compact subsets of [w”; ~(1 IX) = sup{@, 1): x E X}, 1 E ET’, is the support function 
of x c [w”; ZkF” IS the space of real n x m matrices; S{ is the Kronecker delta; E = (6;) is the identity 
matrix, diagn, diag {r$} is the diagonal matrix whose diagonal elements are the components n, of a vector 
7~; AM is the matrix obtained from A by replacing all elements except those on the diagonal by their 
absolute values; T is the transposition symbol; e’ = (0, . , 0, 1, 0, . . , 0) T E R” is the i-th unit vector 
in [w” (with 1 in the i-th position); e = (1, 1, . . . , l)T E R”; E(X) is the set of all extreme poin\s of the set 
X E conv[w” (a point x E X is said to be extreme if there are no points x’, x7 E X, x fx-, such that 
x = (x’ + x*)/2); B(c, r) is the sphere in iw” with centre c and radius r; h+(X, Y) = min {y 3 0 IX 2 Y 
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+ ~B(oJ)} is the Hausdorff half-distance; y = ~2; Q(x), where y, @ E [w”, denotes Yi = mEmx @i(x) 

(i = 1, . ..) n). 

2. PROPERTIES OF PARALLELEPIPEDS 

We will now list a few properties of parallelepipeds (see also [16]). 
The support function of a parallelepiped is computed by the formulae 

p(llp(P,p,rr))=(P,I)+~ I(Pi,f)lrci 
i=l 

An outer estimate for Q E conv R”, minimal with respect to inclusion among all parallelepipeds with 
given orientation matrix V, has the form 

Pv (Q) = P(v , V, v) (v = Vc) (2.1) 

Ci=(p((V-‘)TeiIQ)-p(-(V-‘)Tei)Q))/2 

vi =(p((V-‘)Te’IQ)+p(-(V-‘)T,i IQ>)/2, i=l,...,n 

The construction of parallelepipedal estimates for attainability sets is based on performing operations 
over parallelepipeds (affine transformations, geometrical sum and multiplication by an interval matrix). 
The result of such an operation may not be a parallelepiped, and in that case it will be approximated 
from outside by a parallelepiped. 

If the matrixA E M”“” is non-singular and a E R”, then 

AP(p,P,7c)+a=P(Ap+a,AP,x)=P(Ap,+a,APB-’,Bn) 

B = diag{ll Ap’ 11) 

For a sum of parallelepipeds, formula (2.1) becomes 

P” 
( 

k$l P(P’? P(??F) 
1 ( 

= P $ p (‘) V, 2 Abs(V-‘P’k’)rc(k’ , 
k=l k=I 1 

By an intental mafti A = {a/> given by a pair of matrices A = (&I, A = {a{) E M”““,A c A, we 
mean [14] the matrix whose elements are the intervals a! = [@, $1, or, by another definition, the set 
of matrices A = {A E M”““: h c A c 2). The product of a set X C Iw” by an interval matrix A is 
defined by 

A~X=(ydR” :y=Ax, AEA, XEX) 

Note that if 

A=(A+&l2, i4=(x4)/2, i=(A:AbsA=+ 

then A 0 X C AX + a 0 X. It is well-known [6-81 that even if X E conv R”, the set A 0 X need not be 
convex. 

Let Q = co(A 0 X). If the function ~(11 Q) . k IS nown, then formulae (2.1) define a whole family of 
estimates P’(Q). Using previously known results [6], one can verify the truth of the following proposition. 

Lemma 1. If X E conv R” and A is an interval matrix, then 

p(l I co(A 0 X) = max i 5 Nla.K{~~l~Xj,Z~liXj) = 
reE(X)i=’ j=’ 

max (fTi~+(AbsI)Ti(Absx)) 
reE(X) 

(2.2) 

Remark 1. If X = P = P(p, P, IT), then the maximum in (2.2) is evaluated over all vertices P, of which there are 
at most 2”. If the number m of non-zero elements is not large (m c n), it may be less laborious to use another 
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expression for p(l] co(A 0 P)). Let [E(A) be the set of “extreme values” of A, that is, the set of all possible different 
matrices A@) with elements nlk)j E {gi, ;i,‘} (i,j = 1, . . . . n). 

Then 

p(flco(AoP))= max 
A(‘)d(A) 

I)+ 5 I(A f)lrr. * I 
i=l 

(2.3) 

co(A 0 P) = co(U(A%(P) ) A(‘) &(A))) 

(see, e.g. [lo]). The number of elements Ack) of the set [E(A) is 2’“, where m G n2. 
We note the following relation between the estimates PE(A Q P) and the result of using operations from 

interval analysis [14, 151. Classical interval arithmetic is an algebraic system <I(R), +,-, *,/>. Its base set 
1(W) consists of the intervals [s, X] = {x: _x c x C X} of the real axis R. Let + E {f, -, *, /} be a binary 
operation on R. If a, b E I(W), then a + b = {z = a * b: a E a, b E b} defines a binary operation on 
f(R). Let MmX”(I(R)) be the set of m x n interval matrices. Operations, on this set are defined 
as follows [14]: if A = (a:}, B = {bj} E Mm”“(Z([W)), then AkB = {a/ 2 bi}; if A E MmX’(I(R)) and 

BE MrX”(I(R)),thenA*B= {i$*bi}. 

Remark 2. A 0 P c PE(A 0 P) C A+P,(P) for any parallelepiped P. But if P = P(p, E, x), then 
PE(A 0 P) = A*P,(P) = A*P. 

Example. Let us construct a few outer estimates for A 0 P, where 

A = (A : Abs(A -ii)+, ;i = E+oC, xi =oD, P= P((I,l)T, P,(3,2)T) 

The continuous lines with distinguished vertices in Fig. 1 represent a parallelepiped P, the dashed lines the set 
Q = co(A 0 P), the x’s the points defining Q. The dash-dot lines represent the estimate A*P,(P), the thick lines 

r .-. 
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_-___ 
1 

i i 

-5 0 7 

Fig. 1 
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the estimates P,,C,(kj (Q) (k f 1, 21, w ere P”) = E and P”) is the orientation matrix of the parallelepipedxP. The h 
thin lines represent P,+) (A P + A o P) (k = 1,2). It IS o VIOUS that estimates of the form PV(Ao P) and even P,(xP b 
+ A 0 P) may prove to be better (in the sense of volume) than A*P,(P). 

3. OUTER ESTIMATES OF ATTAINABLE SETS 

Let p(t) E M”““, t E T be a continuously differentiable function with 

det P(t)#O, tET (3.1) 

(J’(t) will define the dynamics of orientation matrices). We shall construct outer estimates P(t) for the 
attainable set X(t). The arguments are analogous to those of [3, 4, 71. 

Fix t E (0, (31 and consider a partition TN of the interval [0, t] by points 

to = 0, tk = $ cTi, k=l,..., N, tN=t. q>o 
i=l 

We shall use the simplest finite-difference approximation of system (1.1) 

x[k]=A[k]x[k-I]+B[k]w[k], k=l,...,N 

A[&]= E+a,A(t,_,) E A[kl=(E+o,A: A E A(t,_,)l 

x[O] E X,, wlkl E R[kl = o,W,_, 1, B[kl E B[kl = W,_,) 

With the matrices P[k] given, if we construct P[k] = P(p[k], P[k], rc[k]), 

Z[k] = i Z’“[k], Z”‘[k] = B[k]oR[k] 
j=l 

(3.2) 

(3.3) 

(3.4) 

Z’2’[kl = ;i[k]P[k - I], Z’3’[k] = ;i[k]oP[k - I], J = 3 

(3.5) 
i[k]=E+o,&r,_,), ti[kl=(o,A: kii(tk_,)l 

then, by what was stated in Section 2, it will be true that 

x, r;P[Ol, Z[k]EP[k], k = I ,..,, iv (3.6) 

and P[k] will be outer estimates (of type I, superscript I) for the attainability set X[k] of the finite- 
difference system (3.2). Similar conditions will be satisfied in general by sharper estimates (of type II, 
superscript II) of the form (3.3), (3.4), where 

ZC2’(k] = A[k]oP[k - I], J = 2 (3.7) 

Relying on formulae (3.3)-(3.5) and (3.3), (3.4), (3.7), we construct estimates for X(t), say 

P’(t) = P(p’(t), P(t), d(t)) and P”(t) = P@‘(t), Z’(t), n”(t)). 

As P[k] we take the matrices P[k] = P(tk). Then 

P[kl=P[k-l]+a,P(t,_,)+o(o), k=I,...,N 

P[k]-’ = P(k - 11-l - o,P[k - 11-l I$,_, )F’fk - I]-’ + o(o) 

0 = max(cT, (i = I ,..., A’), O-‘o(o)+0 when o-+0 

(3.8) 

(3.9) 
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Applying formulae (3.3)-(3.5) in this specific case, we have 

p[k] = f; p’j’[k], 7t[k] = i .(j)[k] 
j=l j=l 

p'"[k ] = P[k](p'j)+[k] - p”‘-[kJ)/2, 7P[k] = (p’i)+[k] + p’“_[k])/2 

(fP[k]-‘&,_,)w + Abs(qk]-‘)&(r,_, )Abs w) 

(3.10) 

where 

p’2’[k]=(E+o,;i(r,_,))p[k-1], p’3’[kl=0 

~‘~‘[k] = Abs(P[kl-‘(E+o,;i(r,_, ))P[k - lJ)n[k - 11 

7P[k] = CL max Abs(P[k]-‘)&_,)Absx 
xcE(P[k-II) 

(3.11) 

We now subtract n[k - 11 from both sides of the expression for n[k], divide by ok and take the limit as 
CJ + 0. Throughout we use expression (3.9), estimates of the type 

IIa+~l--lall~3IEl, Imax{a, +El,~,+E2]-maxI~l,a2]I~max(l~l Llq I) 

the equality 

Abs(E+D)-E=AbD, VD={d/):Id~j~l, i=l....,n 

and the continuity of 2, a, &, B. The result is a system of ordinary differential equations (ode) 

ti’ = Ab(P-‘(AP- +))x’ + max 
SEE(P(O.E.C)) 

Abs(P-‘)i Abs(p’+Pdiagn’c)+(f++f-)l2 (3.12) 

ff = wE~gIj)(W’6w + Abs(P-‘)bAbs w) (3.13) 

where for brevity the arguments t are omitted in all terms. Similarly 

$=;ip’+P(f+-f-)/2, teT (3.14) 

Now applying formulae (3.3), (3.4) and (3.7) in this specific case, we obtain (3.10), where 

p!2)f[k] = max 
~EE’P(O.E.~D~,~=’ I=‘.2 

(3.15) 

Here, taking (3.9) into consideration, we have 

where the arguments tk_’ and k - 1 are omitted for brevity. Separating terms that are small to the first 
order in o, we introduce the notation 

‘piA; = (-(P-‘kP-‘)48! +(P-‘)gg&)(p+ PdiagQ (3.16) 

The functions &‘,(o, 5) and cp$(Q are obtained from $,$(cY, 5) and (P~$(Q by replacing d by A. 
But n@)[k - 11 = ($*)’ + $*)-)/2, where 

$2)’ = (+p-‘p + n); = max 
SEE(P(O,E.~)) 

+eiT P-‘(p+ Pdiagxc) (3.17) 
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that is iJ!‘)’ are identical with the right-hand sides of Eqs (3.15) for 0, = 0. Using arguments analogous 
to those ‘of [17, pp. 71-721, it can be shown that 

p;*‘*[k]-$*‘+ =o,@;+o(o), i=l,...,n (3.18) 

@f = max i max(*cpj~p(@) = max(fF’(i - PP-‘)x+ 
gcf c+’ 1=‘.2 SEE; 

+Abs(P-‘)A Absx)i; x = p+ Pdiagxc 

In view of condition (3.1) and the continuity ofd and 2, we have here d’o(o) -+ 0 as o + 0, uniformly 
in t,p, n, if the latter are chosen in a closed bounded domain. The maximum in (3.18) must be evaluated 
over those 4 E lE(P(0, E, e)) at which the maximum in (3.17) is achieved, that is, one can take 

$ =(C: {EIE(P(O,E,e)), & =+l) (3.19) 

Writing out (n[k] - n[k - I])/cQ and (p[k] -p[k - I])/cJ~ using formulae (3.10), (3.8), (3.18) and (3.17) 
and letting o + 0, we arrive at a system of ode 

jl” =(@‘+a-)/2+(f+ +f_)/2 

(3.20) 

Theorem 1. Let X(f) be the attainability set of system (l.l)-(1.5), (1.8), and let Z’(t) E M”“, t E T 
be an arbitrary given continuously differentiable function satisfying condition (3.1). If the parameters 
of the parallelepipeds P’(t) = P@(t), P(t), r?(t)) are defined by the ode’s (3.12)-(3.14) (of type I) and 

x’(O) = Abs(P(O)-‘Pa&,, p’(0) = pa (3.21) 

then P’(t) will satisfy relations (1.9) and (1.10). The same holds for P”(t) as defined by Eqs (3.21) (with 
the superscript I replaced by II) and ode’s (3.20) (of type II), where the dependence of the functions 
f’ on t and @’ on t,p”, 7~” is defined by formulae (3.13) (3.18), (3.19) and (3.16) withp and 71 replaced 
byp” and rc”. In addition, X(t) c P”(t) C P’(t). 

The proof is analogous to that of [4, Section 8.31 (but without the change of variables of [4, p. 1291). 
To verify inclusions (1.9) one uses the inclusion 

where P[k] are constructed according to formulae (3.3)-(3.5) or (3.3), (3.4) and (3.7), o(1) + 0 as 
o -+ 0, the quantity o(1) is uniformly small on T and is independent of TN. For the proof of the last 
inclusion, one uses the integral funnel equation [18, 81 to establish that 

k+(X(tj+‘,tj,P[il), P[i+ IIFda) 

and then reasons along the same lines as in [19, Chapter VIII, Section 41. The relations P”[k] c P’[k] 
guarantee the truth of the inclusions P”[t] c P’[t]. 

Remark 3. Outer ellipsoidal estimates have been constructed [7] for the attainability set of system (l.l), (1.2), 
(lS), where B(t) = E, X0 is an ellipsoid and the function w(t) is known exactly. The ode’s for the matrix of the 
ellipsoid require a maximum operation requiring the checking of 2”-’ versions, where m is the number of non- 
zero elements ofA. In the general case, m = rz*, and then the computation of parallelepipedal estimates may prove 
to be less laborious. 

Remark 4. If the number of non-zero elements of a and b is not large, the following changes may be made in 
Eqs (3.12) and (3.13) 

max Abs(P-‘)iAbsx= max 
xeE(P’(r)) DEE(&)) 

(F’Dp’ +Abs(P-‘DP)n’) 

f’ = BE~~~:I)‘(+P-‘Br+Abs(P-‘BR)p) 
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Remark 5. If B = B = E, then 

(f’+f-)/2=Abs(P-‘R)p, P(f+-f-)/2=r 

If moreover4 =A, then system (3.12) (3.14) is identical with system (3.20). 

Remark 6. If P(t) is evaluated by a system 

i=riP, reT; P(O)=P, 

then, under the assumptions of Remark 5, one arrives at the equations derived in [16]. 

Remark 7. If P = E, we obtain coordinatewise estimates of two types for X(t). If 

Xn = P(O,E,rro), R=P(O.E,p), A=diag7c, _B=EsE, PmE 

(3.22) 

Eqs (3.12) and (3.14) are identical with those derived in [20], by another method, under the same assumptions. 

Remark 8. If 2 is a constant simple matrix with n real eigenvalues ki and the columns of P are constant and 
identical with the eigenvectors of A, that is, 

Pdiagk = ,iP 

then 

ir’ = diaghn’ + max Abs(P-‘)AAbs(p’ 
~EEwJ,E.~)) 

+ Pdiagn’&+q 

If the elements ofa are not “small”, then even sharper estimates P”(t) may turn out to be too coarse. We shall 
demonstrate a case in which the attainability set may be estimated more accurately by combining such estimates. 

Corollary 1. Suppose the system belongs to the class of systems of constant coefficients of type 
(l.l)-(1.4) where 

A(r)=A, A(r)=A, i(t)=0 (3.23) 

and Y(t) is the attainability set of system (l.l)-(1.4) (3.23). (For A(t) s A, attainability sets X(t) and 
Y(t) corresponding to two different cases, when the matrix A is assumed to be dependent on or 
independent oft, are generally different.) Let 

AC ; A(j) (3.24) 
j=l 

that is, for each matrix A E A an interval matrix A(j) exists such that A E A('). Let X”‘(t) and Y(j)(t) 
denote the attainability sets of systems (l.l)-(1.3) and (l.l)-(1.4), (3.23), respectively, where the matrix 
A is replaced by A(j), and let P(')(t) denote estimates of type I or II for X”)(t) corresponding to P(j)(.). 
Then 

Y(r)z; 6 Y(j’(r)r i, X(j)(t)r 6 P(j)(r) 9 reT (3.25) 
j=l j=l j=l 

Remark 9. Inclusion (3.24) may be obtained, for example, by introducing an “interval lattice”. Namely, expressing 
the elements a! of the matrix A in the form 

we introduce the set of all possible interval matrices with elements a (Iclfi)t. The number of such matrices is 
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where Jap = 1 for one-point intervals a!. For a “sufficiently dense” &“ Interval lattice”, outer estimates for Y(t) may 
be made more accurate by taking the intersection of estimates (3.25) over certain sets n(j) of the functions P(j)(.) 

P(j)(l) 
j=l pW(.),nli) 

In particular, finding PC’)(.) by using system (3.22) one can take the intersection over some set of matrices 
P(0) = PO 

Y(r)rn (J P%) 
p” j=l 

4. EXAMPLES 

1. Let 

Let P(‘)(t), P’*‘(r) and P(‘)(r) denote estimates P”(t) for attainability sets corresponding to X0 = Py) = P(0, E, e) 

(the first case), X,, = $f) = P(0, E, (0.1, l)T) (the second case) and X0 = Ptrs) = P(0, E, (1, O.l)T) (the third case), 

obtained assuming that relations (3.22) hold. Let EC’%‘)(f), EC’,‘)(t), E(‘)(t) and E(‘)(t) be ellipsoidal outer estimates 

for attainability sets corresponding to X0 = E, (‘.‘) = B(0, l), X,, = E{,r.2) = B(0, ,2), X, = Ef) = E(0, diag(0.01, 1)) 

and X0 = Et) = E(0, diag{l, O.Ol}), constructed using the equations from the example of [7]. Here E(q, Q) = 

{x : (Q-‘(x -q), (x -9)) s 1) denotes an ellipsoid. 

(a) 

Fig. 2 
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vol P/4, Vol Elx 

._.-.-.-. ._.m-.-.-. 

0.8 

0 0.2 0.4 0.6 ’ 

Fig. 3 

Numerical calculation of P(‘) is done using formulae (3.3) (3.4) and (3.7) for N = 500, and ellipsoidal estimates 
are found using the numerical integration function ode23.m of the MATLAB system. In Fig. 2(a) we show on the 
left sections of P(l)(.) for every 10 stepsk; on the right, shown by the dashed lines, are the sets Eiri”) C Pi:’ C Ef,‘), 
and by the solid lines-the estimates E(“‘)(B), P(‘)(8) and E(“‘)(O) (p arallelogram -P(‘)(B), inner ellipse - E(‘,‘)(B), 
outer ellipse - E (‘~2)(8)) Figure 2(b) corresponds to the second case. The table lists the ratios of the volumes of . 
the estimates at certain instants of time to the volumes X0. Comparison of the results as represented by Fig. 2 and 
the table shows that parallelepipedal estimates have proved comparable with ellipsoidal estimates: for the first 
case they are inferior, but for the second and third -better (in particular, Pt2)(8) C E(2)(f3), although Pf) > Elf’). 
The “wrapping effect” for the estimates described by ode (3.20) and (3.22) has turned out to be significantly less 
than for coordinatewise estimates, as described by ode (3.2) with P = E ( see the table, where P”“(r) denote 
coordinatewise estimates for the cases i = 1, 2, 3). In this example, the parallelepipedal estimates of types I and 
II were the same. For X0 = P(e, E, e) the volumes of the estimates of types I and II, when relations (3.22) hold, 
differ by a factor of more than 1.5 at time 8. 

2. Let 

(a system with constant coefficients in the selected range describes a damped harmonic oscillator). 

i 1 2 3 

I I 2 1 2 I 2 

vol P(‘)(r)/ vol d” 3.8 11.4 6.3 32.8 13.8 33.6 

vol E”*i)(,)/ vol Et’“, j = I,2 2.6 7.7 

vo1E(‘)(~)/v0l Et:’ 7.0 74.2 27.4 53. I 

“01 P(i)C(l)/“Ol Pf) 14.9 218.1 35.0 511.8 56.5 826.8 

We shall construct estimates P”‘(t) (i = 1, 2,3) for the attainability set for X,, = P(0, E, e) in accordance with 
Remarks 6-8 (the estimates of types I and II for the first two cases are again identical) and find estimates E”‘(r) 
and E@‘(t) for the attainability sets for X0 = B(0, 2), using the ode’s of [7] and the technique of [lo], respectively. 

The graphs in Fig. 3 show the ratio of the volume of the estimate to the volume of X,. The volume of the ellipsoidal 
estimate [7] (curve 4) first decreases and then increases, reaching the value 3.4 x 10” at time 8. The algorithm 
proposed in [lo] yields only a stable ellipsoidal estimate, whose volume increases only slightly (see curve 5; it was 
derived in [lo] for a computation with step-size 8/N = 10”). The estimate PC”(.) (curve 2) could be constructed 
up to time 8 neither by using formulae (3.3), (3.4) and (3.7) with N = lo’, nor by integrating the ode’s by means 
of the solver system of MATLAB, since the matrix P(t) approaches a singular matrix. The volume of the 
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I 1 

-2.5 0 XI 2.5 -5 

Fig. 4 

coordinatewise estimate Pt2)(.) (curve 2) first decreases and then slowly increases. On the whole, the best results 
(in the sense of volume) are given by the estimate PC3)(.) J 
volPt3)(0)/volXe > 1). Thus, the estimates PC2)(.) and P( 

curve 3) whose volume decreases monotonically (although 
‘(.) have proved to be better than the ellipsoidal estimates 

proposed in 17, lo]. 
3. Let us consider Example 1 with the additional assumption that A(t) = A. Figure 4 shows points of the 

attainability set Y(B) corresponding to X, = Pt) (left) and X, = Pf) + e (right). These points were computed 
using Cauchy’s formula for randomly chosen initial points of X, and values of the matrix A from A. The “large” 
parallelepipeds are outer estimates for the sets Y(O) c X(e), found on the basis of condition (3.22) (estimates of 
types I and II are represented by the dashed and solid lines, respectively; in the diagram on th left they coincide). 
The figure also shows parallelepipeds of type II (assuming the truth of condition (3.22)) for systems 
corresponding to the “interval lattice” obtained by partitioning a: = [-1.8, -0.21 into six equal parts. The combination 
of these parallelepipeds yields more accurate non-convex estimates for Y(t3). 
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